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Introduction
The study of the algebra of bounded operators on a Hilbert space is an important area of functional
analysis. In order to study the algebraic and topological structures of this kind of algebras, one wants to
define some more general algebras : C∗-algebras. They basically are Banach algebras equipped with an
involution, which generalize the notion of adjunction for operators on a Hilbert space. These algebras,
and more generally operator algebras, are an important piece of non-commutative geometry and its
application to Physics for instance. In order to study and discriminate the topological properties of
C∗-algebras, one would like to have a tool, a topological invariant, as we have the fundamental group for
topological spaces with which we can say wether two topological spaces are not homotopic (and so not
homeomorphic). In operator algebras, we have K-theory. It allows us to classify some C∗-algebras. As
we will see, as a functor from the category of C∗-algebras to the category of abelian groups, K-theory
has numerous interesting properties such as homotopy invariance, stability, half and split exactness.
Besides, there are powerful tools to compute the K-groups of a C∗-algebras, like the 6-term exact sequence.
K-theory was first developed by Alexander Grothendieck for algebraic geometry in 1957. Then, in
1961, Micheal Atiyah and Friedrich Hirzebruch applied the same construction to vector bundles : this
is topological K-theory. K-theory for C∗-algebras, and more generally for operator algebras (it can be
constructed with Banach algebras) is a generalization of topological K-theory and therefore computations
in these two cases are related, by the Gelfand-Naimark theorem for instance, which basically maps a
commutative C∗-algebra to a topological space. This report is an introduction to K-theory for C∗-algebras.

In the first section, we will define C∗-algebras and state some basic properties and important theorems
such as the Gelfand-Naimark theorem. Projections, which are the elements of C∗-algebras we will need
to define K-theory, will be studied. Then we will define tensor products of C∗-algebras and study their
behavior. In the second section, we will define some preliminary tools like categories, direct limits of
topological spaces and the Grothendieck construction. Then we will be able to define the first K-group K0
and study its functoriality, and define higher K-functors, which shares many properties of K0, as wee will
see. Finally, in the third section, we will study the half-infinite exactness of K-theory and the Toeplitz
algebra in order to prove one of the most powerful tools to compute K-theory of some C∗-algebras : the
Bott periodicity theorem and then the 6-term exact sequence as a consequence.
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1 C∗-algebras
1.1 Basic definitions and main statements
We introduce here some of the basic definitions and results about C∗-algebras, which one can find in many
books, like [Mur90], [Bla05] and [Dix69]. More of the basic theory, and spectral theory, of C∗-algebras
and, more generally, Banach algebras can be found in the first two books.

Definition 1.1.1. A C∗-algebra A is an algebra over C with a norm and an involution ∗ such that A is
complete and such that ‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a∗a‖ = ‖a‖2 for every a, b ∈ A. A is called unital if A has a
multiplicative identity.

Remark 1.1.1. A ∗-algebra is just an algebra over C with an involution.
Example 1.1.1.

• The unital algebra C(X) of continuous functions defined on a compact Hausdorff space X, with
complex conjugacy as an involution.

• The algebra C0(X) of continuous functions defined on a locally compact Hausdorff space X and
vanishing at infinity.

• The matrix algebraMn(C), with the operator norm and conjugate-transpose.
• Mn(A) for any C∗-algebra A, with the operator norm and involution-transpose.
• The algebra B(H) of bounded operators on a Hilbert space H, endowed with the operator norm.

Remark 1.1.2. One can easily verify that the intersection of C∗-subalgebras of a C∗-algebra A is a C∗-
algebra. Then we can define the C∗-subalgebra generated by a subset S ⊂ A as the smallest C∗-subalgebra
of A containing S.
The direct sum A⊕B of two C∗-algebras A and B, endowed with the entrywise involution and the norm

‖(a, b)‖ = max (‖a‖ , ‖b‖)

is a C∗-algebra. And, if I is a closed ideal of A (in the following every ideal will be two-sided and closed),
I and the quotient A/I are C∗-algebras, with usual norms. See [Bla05] for more details.

In the case of a non-unital C∗-algebra A, we will sometimes need to add a unit. Define A+ = A⊕ C as a
vector space, and endow it with the entrywise involution, the multiplication

(a, λ) · (b, µ) = (ab+ λb+ µa, λµ)

and the norm
‖(a, λ)‖ = sup {‖ab+ λb‖ , b ∈ A, ‖b‖ = 1}

Then A+ is a unital C∗-algebra, whose A is a closed ideal, by the inclusion a 7→ (a, 0). Note that,
if ϕ : A → B is a ∗-homomorphism, we can extend it to a ∗-homomorphism ϕ+ : A+ → B+ by
(a, λ) 7→ (ϕ(a), λ). Thus, unitalization is a functor from the category of C∗-algebras to the category of
unital C∗-algebras.

Definition 1.1.2. Let A be a unital C∗-algebra and a ∈ A. We call the spectrum of a the set

sp(a) =
{
λ ∈ C

∣∣ a− λ1 /∈ Inv(A+)
}

Definition 1.1.3. Given two C∗-algebras A and B. A ∗-homomorphism, ϕ : A → B is an algebra
homomorphism such that ϕ(a∗) = ϕ(a)∗. It will often be just called homomorphism when the context is
clear.

Remark 1.1.3. By considering the spectral radius of an element of a C∗-algebra, one can prove that any
∗-homomorphism between C∗-algebras is continuous. Furthermore the image of a homomorphism between
C∗-algebras is closed (see [Bla05] for a proof).
We have a natural notion of homotopy between two homomorphisms.

Definition 1.1.4. Let f, g : A→ B two homomorphisms between C∗-algebras A and B. Then f, g are
called homotopic if there is a homomorphism, called homotopy, F : A→ C([0 , 1], B) such that ev0 ◦F = f
and ev1 ◦ F = g. Here evx denotes the evaluation map at x.
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Hence we get a notion of homotopy equivalence between C∗-algebras.

Definition 1.1.5. Two C∗-algebras A and B are homotopic if there exist two homomorphisms f : A→ B
and g : B → A such that f ◦ g is homotopic to idB and g ◦ f is homotopic to idB . We denote it by A ≈ B
and we call f, g homotopy equivalences.

Definition 1.1.6. An element a of a C∗-algebra A is called :

• normal if aa∗ = a∗a
• positive if a is normal and sp(a) ⊂ R+
• unitary if aa∗ = a∗a = 1 (in the case A unital)
• a projection if a2 = a = a∗

• a partial isometry if v∗v is a projection

We denote by U(A) the set of unitary elements of A and by P(A) the set of projections, and by Un(A)
and Pn(A) the set of unitaries and the set of projections inMn(A).
The following theorem is one of the most fundamental results of the theory of commutative C∗-algebras.
It is useful to calculate the K-theory of some C∗-algebras, by making a link (which we will not see here)
between K-theory of vector bundles and K-theory of C∗-algebras. One can find a proof in [Mur90].

Theorem 1.1.1 (Gelfand). Every commutative C∗-algebra A is isometrically ∗-isomorphic to the C∗-
algebra C0(X) for some locally compact Hausdorff space X.

Representation of C∗-algebras and, the Gelfand-Naimark theorem, are used all the time in the theory of
C∗-algebras. It will allow us to see any C∗-algebra as a C∗-subalgebra of B(H) for some Hilbert space H.

Definition 1.1.7. A representation of a C∗-algebra A is a pair (H,ϕ) where H is an Hilbert space and
ϕ : A→ B(H) is a ∗-homomorphism. The representation (H,ϕ) is called faithful if ϕ is injective.

Remark 1.1.4. If (Hλ, ρλ)λ∈Λ is a family of representation, then their direct sum is a representation.
A proof of the following theorem can be found in [Mur90].

Theorem 1.1.2 (Gelfand-Naimark). Every C∗-algebra is isometrically ∗-isomorphic to a C∗-subalgebra
of B(H) for some Hilbert space H. If A is separable, H can be chosen to be separable.

Continuous functional calculus is another powerful tool for C∗-algebras. We will not prove the following
proposition. However one can read more about continuous functional calculus in [Dix69].

Proposition 1.1.1. Let A be a unital C∗-algebra and x ∈ A a normal element. Then we have the
following homomorphism of C∗-algebras

C(sp(x)) −→ A
f 7−→ f(x)

and ∀f ∈ C(sp(x)), sp(f(x)) = f(sp(x)).

Finally, let us state the polar decomposition in a unital C∗-algebra, which we will need in the following.
Just mention the existence of a unique square root of a positive element, whose a proof can be found in
[Mur90].

Proposition 1.1.2. Let A be a C∗-algebra and a ∈ A positive. Then there exists a unique element b ∈ A
such that b2 = a. This element is called the square root of a, denoted by a1/2.

Given an element a of a C∗-algebra A, we call the absolute value of a the element |a| = (a∗a)1/2. From
this comes the polar decomposition. One can read a proof in [RLL00].

Proposition 1.1.3. Let A be a unital C∗-algebra and a ∈ A invertible. Then |a| is invertible and
u = a |a|−1 is unitary. Note that a = u |a|. Moreover, the defined map u : GL(A)→ U(A) is continuous.
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1.2 Projections
The group K0 of a C∗-algebra is defined from equivalent classes of projections. In this subsection, which
is based on [NdK16], we will introduce them and see some their important properties, which will give us a
better understanding of K0 and several ways of representing the elements of K0. In this subsection A will
be a unital C∗-algebra. We define three equivalence relations on P(A) :

• p ∼h q if there is a path in P(A) connecting p and q ; we say that p and q are path connected,
• p ∼u q if there exists a unitary u ∈ U(A) such that p = uqu∗ ; we say that p and q are unitarily

equivalent,
• p ∼ q if there exists x ∈ A such that p = x∗x and q = xx∗ ; we say that p and q are Murray-von

Neumann equivalent.

Note that, if two projections are equivalent in any of these ways in Pn(A), they are also equivalent in
Pn+1(A), under the embedding a = diag(a, 0). In fact, any matrix a ∈Mn(A) can be seen as diag(a, 0)
(which we will sometimes still denote by a, without ambibuity) in Mm(A), for m ≥ n. For any two
matrices p ∈Mn(A) and q ∈Mm(A), define

p⊕ q = diag(p, q) =
(
p 0
0 q

)
This operation is associative and, if p, q are projections, so is p⊕ q.

Proposition 1.2.1. Let p, q ∈ P(A). Then p⊕ q ∼h q ⊕ p.

Proof. Consider the path

γ(t) = R(t)
(
p 0
0 q

)
R(−t) where R(t) =

(
cos(π2 t) − sin(π2 t)
sin(π2 t) cos(π2 t)

)
This is a path of projections in P2n(A), such that γ(0) = p⊕ q and γ(1) = q ⊕ p.

Now let us find relations between ∼h, ∼u and ∼.

Proposition 1.2.2. Let p ∈ P(A) and pt be a path of projections from p. Then there is a path of
unitaries ut such that u0 = 1 and u∗t put = pt.

Proof. First, suppose that ∀t ∈ [0 , 1], ‖p− pt‖ < 1, and consider xt = ppt + (p− 1)(pt − 1). Then, since
2p − 1 is unitary, for all t ∈ [0 , 1], ‖xt − 1‖ < 1, so xt is invertible. We write its polar decomposition
xt = ut |xt|. Since ut 7→ xt, pt 7→ xt and xt are continuous, ut is continuous. Direct computation
shows that xtpt = ppt = xtpt. Moreover, ptx∗txt = ptp = x∗txtpt, which gives x∗txtp2

t = p2
tx
∗
txt. Hence

|xt| pt = pt |xt|. Thus put = utpt, and so ∀t ∈ [0 , 1]u∗t put = pt. And u0 = x0 = 1. We get the wanted
path.
Now consider the general case. Then, since pt is uniformly continuous (because continuous on the compact
[0 , 1]), there exists a partition 0 = t0 < t1 < · · · < tn−1 < tn = 1 such that ∀t ∈ [ti , ti+1] , ‖pti − pt‖ < 1.
Hence, we can apply the first point with pti in the role of p, to get a path uit on each interval [ti , ti+1].
Thus, by gluing the paths ui+1

t uiti , we obtain the desired path of unitaries.

By applying the previous proposition with p1 = q, we get the following corollary.

Corollary 1.2.1. Let p, q ∈ P(A). If p ∼h q, then p ∼u q.

Lemma 1.2.1. Let p, q ∈ P(A). Let v ∈ A such that p = v∗v and q = vv∗. Then qvp = qv = pv = v.

Proof. We have v∗vv∗ = v. Endeed :

‖v − vv∗v‖2 = ‖(v − vv∗v)∗(v − vv∗v)‖ = ‖(1− p)p(1− p)‖ = 0

So qvp = v, qvp = vv∗vv∗v = vp and qvp = qv.

Proposition 1.2.3. Let p, q ∈ P(A) such that p ∼ q. Then p ∼u q in P2(A) and p ∼h q in P4(A).
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Proof. Define
U =

(
v 1− q

1− p v∗

)
Then, it follows from the previous lemma that U is unitary, and we find that U∗qU = p. Thus, p ∼u q in
P2(A). Now define

V =
(
U 0
0 U∗

)
∈ U4(A)

Then
Vt =

(
U 0
0 1

)
R(−t)

(
1 0
0 U∗

)
R(t)

defines a path of unitaries from V0 = V and V1 = I4. Note that V ∗qV = p. Hence, it is a simple
verification to see that V ∗t qVt is a path of projections from p to q. We get p ∼h q in P4(A).

Proposition 1.2.4. Let p, q ∈ P(A) such that p ∼u q. Then p ∼ q.

Proof. Let u ∈ U(A) such that q = u∗pu. Then p ∼ q by the partial isometry u∗p.

All these results mean that if two projections are equivalent in one way, then they are in another way in
Pn(A) for some sufficiently large n.

1.3 Tensor products of C∗-algebras
This subsection is mainly based on [Bla05] and [Mur90], where more details can be found. Denote by
A⊗alg B the algebraic tensor product of two vector spaces A and B over C. Recall that it is defined in the
following way. Consider the free vector space F (A×B) generated by A×B. Then A⊗algB = F (A×B)/ ∼
where ∼ is the equivalence relation defined on A×B by :

(a+ a′, b) ∼ (a, b) + (a′, b)
(a, b+ b′) ∼ (a, b) + (a, b′)
(λa, b) ∼ (a, λb) ∼ λ(a, b)

In fact, A⊗alg B consists of all finite linear combinations of elements of the form a⊗ b. Recall that it
satisfies the following universal property.

Proposition 1.3.1. Given three vector spaces A, B and C and a bilinear map ϕ : A × B → C, there
exists a unique linear map ϕ̃ making the following diagram commute

A×B C

A⊗alg B

ϕ

ϕ̃

Now we should endow it with a complete norm making it a C∗-algebra. But such a norm is generally not
unique. A way of doing this will be with representations in Hilbert spaces. First, consider two Hilbert
spaces H and K and endow H ⊗alg K with the inner product defined by

〈x1 ⊗ y1 , x2 ⊗ y2〉 = 〈x1 , x2〉H〈y1 , y2〉K

And define H⊗̄K as the Hilbert space completion of H ⊗alg K for the norm defined by the inner product.
Now, just before defining a first notion of tensor product of C∗-algebras, given two ∗-algebras A and B,
endow A⊗alg B with a multiplication and an involution, making it a ∗-algebra :

(a⊗ b) · (a′ ⊗ b′) = (aa′ ⊗ bb′) and (a⊗ b)∗ = a∗ ⊗ b∗

Now, let us define the minimal tensor product. Let A and B be two C∗-algebras. Consider their universal
representations given by the GNS construction (which gives the proof of the Gelfand-Naimark theorem)
ρA : A → B(HA) and ρB : B → B(HB). In particular, they are faithful. Then, for every operators
T ∈ B(HA) and T ′ ∈ B(HB), by the universal property of the algebraic tensor product, we have an
operator T ⊗ T ′ : HA ⊗alg HB → HA ⊗alg HB ⊂ HA⊗̄HB, which is bounded with respect to the norm
on HA⊗̄HB defined by the inner product above. Hence we can extend T ⊗ T ′ to a bounded operator
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T ⊗ T ′ : HA⊗̄HB → HA⊗̄HB . This gives us the injective ∗-homomorphism ϕ : A⊗alg B → B(HA⊗̄HB),
given by ϕ(a⊗ b) = ρA(a)⊗ ρB(b). And through it, we get a norm on A⊗alg B, from the operator norm
of B(HA⊗̄HB). Finally, we take the completion of A⊗alg B for this norm. We obtain a C∗-algebra called
the minimal tensor product of A and B, denoted by A⊗min B.

Now we construct the maximal norm. We set

‖x‖max = sup
ρ
‖ρ(x)‖

where ρ runs over all ∗-representations ρ : A ⊗alg B → B(H) such that for all a ∈ A and b ∈ B,
‖ρ(a⊗ b)‖ ≤ ‖a‖ ‖b‖. The completion of A⊗alg B in this norm is a C∗-algebra and we call it the maximal
tensor product of A and B, denoted by A⊗max B.

There is a homomorphism πA,B : A⊗max B → A⊗min B, obtained in the following way. Consider the
homomorphism πA,B given by the composition

A⊗alg B
id−−→ A⊗alg B ↪−→ A⊗min B

and consider the representation ϕ : A ⊗min B → B(HA⊗̄HB) of the above construction of A ⊗min B.
Then ϕ is a representation such that

‖ϕ(a⊗ b)‖ = ‖ρA(a)⊗ ρB(b)‖ = ‖ρA(a)‖ ‖ρB(b)‖ = ‖a‖ ‖b‖

Hence, by definition of ‖·‖max,

‖πA,B(a⊗ b)‖min = ‖a⊗ b‖ = ‖ϕ(a⊗ b)‖ ≤ ‖a⊗ b‖max

So we can extend πA,B into an homomoprhism ϕA,B : A⊗max B → A⊗min B.
We say that the C∗-algebra A is nuclear if πA,B is an isomorphism for every C∗-algebra B. In this case,
there is only one C∗-completion of A⊗alg B, which we will simply denote by A⊗B. One can find a proof
of the following important statement in [Bla05].

Proposition 1.3.2. Every commutative C∗-algebra is nuclear.

Lemma 1.3.1. LetX be a locally compact Hausdorff space and let A be a C∗-algebra. Then span{fa, f ∈
C0(X), a ∈ A} is dense in C0(X,A).

Proof. Denote by X+ = X ∪ {∞} the one-point compactification of X. Let

f ∈ C0(X,A) ∼=
{
g ∈ C(X+, A)

∣∣ g(∞) = 0
}

Let ε > 0. Then there exist x1, . . . , xn ∈ X+ such that we have the open cover X+ =
⋃n
k=1 Uk where

Uk = {x ∈ X+ | ‖f(x)− f(xk)‖}. So we get a partition of unity, ie. there is continuous functions
h1, . . . , hn : X+ → [0 , 1] such that h1 + · · ·+ hn = 1 and supp(hk) ⊂ Uk. We obtain that

∀x ∈ X+,

∥∥∥∥∥f(x)−
n∑
k=1

hk(x)f(xk)
∥∥∥∥∥ ≤ ε

In particular, since f(∞) = 0, ‖
∑n
k=1 hk(∞)f(xk)‖ = 0. Let fk be the restriction of hk − hk(∞) to X.

Then fk ∈ C0(X) and ∥∥∥∥∥f −
n∑
k=1

fkf(xk)
∥∥∥∥∥
∞

≤ 2ε

Then, considering the map
C0(X)×A −→ C0(X,A)

(f, a) 7−→ fa

one can prove the following proposition. More details of the proof can be found in [Mur90].

Proposition 1.3.3. Given a locally compact Hausdorff space X and a C∗-algebra A, we have an
isomorphism of C∗-algebras C0(X)⊗A ∼= C0(X,A).
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From now on, ⊗ will always denotes the minimal tensor product. Let us finish this section with two
propositions we will need later on to prove Bott periodicity theorem. One can read proves in [Mur90].

Proposition 1.3.4. Let A,B,A′ and B′ be C∗-algebras. Let ϕ : A → B and ψ : A′ → B′ be two
homomorphisms. Then there exists a unique homomorphism ϕ ⊗ ψ : A ⊗ B → A′ ⊗ B′ such that
∀(a, b) ∈ A×B, ϕ⊗ ψ(a⊗ b) = ϕ(a)⊗ ψ(b).

Proposition 1.3.5. Let I,A,B and D be C∗-algebras such that B ⊗alg D has a unique C∗-norm and
suppose that we have the short exact sequence of C∗-algebras

0 −→ I
ι−−→ A

π−−→ B −→ 0

Then
0 −→ I ⊗D ι⊗id−−−→ A⊗D π⊗id−−−→ B ⊗D −→ 0

is a short exact sequence of C∗-algebras.
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2 Definition of K-theory and main properties
In this section, we will construct the functors K0, K1, and K−n for n ≥ 1, which will associate to
every C∗-algebra A an Abelian group. We will see their main properties, such as direct sum preserving,
homotopy invariance, and the natural isomorphism between the functors K1 and K−1.

2.1 Preliminaries
First of all, we introduce some tools we will need, such as direct limit and the Grothendieck construction.
But, before, let us recall a bit of category theory, which will help us to point out certain important
properties of K-theory.
Definition 2.1.1. A category C is given by

• a class Ob(C) of objects,
• a class Hom(C) of morphisms, also called arrows, between the objects ; for two objects A,B ∈ Ob(C),

we denote by Hom(A,B) the class of morphisms from A to B, and for a morphism f ∈ Hom(A,B),
we also write f : A→ B,

• for every A,B,C ∈ Ob(C), a binary operation Hom(A,B) × Hom(B,C) → Hom(A,C) called
composition of morphisms.

such that :
• for every f : A→ B, g : B → C and h : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

• for every X ∈ Ob(C), there is a morphism idX : X → X such that for every f : A → X and
g : X → B, idX ◦ f = f and g ◦ idX = g.

Example 2.1.1. The category of groups Grp with morphisms of group, abelian groups Ab, topological
spaces Top with continuous functions, C∗-algebras C∗ with ∗-homomorphisms.
Definition 2.1.2. A (covariant) functor F : C → D from a category C to a category D is a mapping
which associate to each object A in C and object F (A) in D, and to each morphism f : A → B in C a
morphism F (f) : F (A)→ F (B) in D, such that :

• for every object X in C, F (idX) = idF (X),
• for every morphisms f : A→ B and g : B → C in C, F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor is defined the same way, except that it reverses the arrows and the composition.
Definition 2.1.3. Let F and G be two functor between categories C and D. A natural transformation
η : F → G is given by a morphism ηA : F (A) → G(A) for every A ∈ Ob(C), such that for every
A,B ∈ Ob(C) and f : A→ B, the following diagram commutes

F (A) F (B)

G(A) G(B)

F (f)

ηA ηB

G(f)

If ηA is an isomorphism for every A ∈ Ob(C), we call η an natural isomorphism.
Actually, a natural isomorphism between two functors tells us that they share the same properties and we
can see them as the same functor.
Next notion we will need is direct limit of topological spaces. The description which follows is based on
[NdK16]. If X be a topological space, we denote by π0(X) the set of path components of X.
Definition 2.1.4. Consider the sequence of maps

X0
f0−→ X1

f1−→ X2
f2−→ · · ·

and note fij = fj−1 ◦ · · · ◦ fi for i < j. We define the direct limit of the sequence as

lim
i

(Xi) =
(+∞∐
i=0

Xi

)
/ ∼c

where, for xi ∈ Xi and xj ∈ Xj , xi ∼c xj if and only if there exists k ≥ i, j such that fik(xi) = fjk(xj).
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∼c is an equivalence relation. Furthermore, for each k ∈ N, there is natural map ιk : Xk → limi(Xi),
given by the composition of the inclusion Xk →

∐+∞
i=0 Xi and the quotient map. Remark that, if the fi

are inclusions, then the direct limit is simply the union of the Xi. One relevant point about the direct
limit is that it satisfies the following universal property.

Proposition 2.1.1. Given the commutative diagram

X0 X1 X2 · · · Xk · · ·

Y

f0

g0

f1

g1

f0

g2

fk−1 fk

gk

there exists a unique map g : limiXi → Y such that ∀k ∈ N, gk = g ◦ ιk.

Proof. Define the map g as
g : limi(Xi) −→ Y

ιk(xk) 7−→ gk(xk)

By writing down what it means, we see that this map is well defined (and so, is unique) and satisfies the
equalities we want.

If Xi are topological spaces and fi are continuous, we can endow the direct limit with a topology :
F ⊂ limi(Xi) is closed if and only if ι−1

k (F ) is closed in Xk for all k ∈ N.

Lemma 2.1.1. Consider a sequence of continuous maps between topological spaces as above such that
fi are closed inclusions and that Xi are Hausdorff. Then

1. the maps ιk : Xk → limiXi are closed inclusions

2. any compact subset K ⊂ limiXi lies in ιk(Xk) for some k ∈ N

Proof. First, let us prove the injectivity of ιk. Let x, y ∈ Xk such that ιk(x) = ιk(y). Then, by definition of
∼c, fkl(x) = fkl(y) for some l > k. Thus, since fi are all injective, x = y, and ιk is injective. Now, let C be
a closed subset of Xk. Then, for l>k, ιk(C) = ιl ◦ fkl(C). Since ιl is injective and fi are closed inclusions,
ι−1
l (ιk(C)) = fkl(C) is a closed subset of Xl. For l < k, by continuity of flk, ι−1

l (ιk(C)) = f−1
lk (C) is closed.

Obviously, ι−1
k (ιk(C)) = C is closed. Thus, ιk(C) is closed in limiXi, and so ιk is a closed inclusion.

Let us now prove the second item. Set X = limiXi. For each k ∈ N, define Yk = Xk \ fk−1(Xk1). When
ιk(Yk)∩K 6= ∅, take yk ∈ ιk(Yk)∩K dans consider the set Y of all these yk. Because of the injectivity of
the fi and by definition of Yk, Y ∩ ιk(Xk) is finite. Hence ι−1

k (Y ) is a finite subset of the Hausdorff space
Xk, and so ι−1

k (Y ) is closed. Thus Y is a closed subset of X, which is compact : so is Y . Let y ∈ Y . By
the same reasoning, we find that Yy = Y \ y is closed. Then X \ Yy is open, and so y = Y ∩ (X \ Yy) is
open in Y . Hence, Y is discrete. Since it is compact, Y is finite. This implies that ∀k > n, ιk(Yk)∩K = ∅
for some n. Thus K ∈ ιm(Xm) for some m.

Corollary 2.1.1. In the situation of the previous lemma, the natural map limi π0(Xi)→ π0(limiXi) is
a bijection.

Proof. Denote by Φ this map, and by [.] the equivalence classes for π0. We consider the sequence of maps

π0(X0) (f0)0−−−→ π0(X1) (f1)0−−−→ π0(X2) (f2)0−−−→ · · ·

where (fi)0 are defined by (fi)0([xi]) = [fi(xi)] (well-defined since fi are continuous) and where we denote
by jk the map π0(Xk) → limi π0(Xi). Note that (fkl)0 = (fl−1)0 ◦ · · · ◦ (fk)0, by functoriality of π0.
Consider the map Φ defined by

Φ([x]) = jk([xk]) where x = ιk(xk) for some k and some xk ∈ Xk

First of all, we have to show that this is well-defined, ie. that Φ(x) does not depend on neither the choice
of k nor the choice of x. If x = ιk(xk) = ιl(xl) for some k < l, then, since fi are injective, xl = fkl(xk),
and so (kkl)0([xk]) = [fkl(xk)] = [xl], which implies jk([xk]) = jl([xl]). Now, let x, y ∈ limiXi such that
[x] = [y]. Then there is a path γ from x to y. Since the image of γ is compact, it lies in ιk(Xk) for some k,
by the previous lemma. In particular, there exists xk, yk ∈ Xk such that x = ιk(xk) and y = ιk(yk). Hence,
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since ιk is injective, ι−1
k (γ) defines a path connecting xk and yk. Thus [xk] = [yk] and jk([xk]) = jk([yk]).

It shows that Φ is well-defined.
Let us prove that it is a bijection. Let [x], [y] ∈ π0(limiXi) such that Φ([x]) = Φ([y]). Then x = ιk(xk)
and y = ιl(yl) for some k < l. So jk([xk]) = jl([yl]), and, by injectivity of fi, (fkl)0([xk]) = [yl], ie.
[fkl(xk)] = [yl]. Then there is a path α connecting fkl(xk) and yl. Hence, ιl ◦ α is a path between
ιk(xk) and ιl(yl) in limiXi. Thus [x] = [ιk(xk)] = [ιl(yl)] = [y]. For surjectivity, if a ∈ π0(limiXi), then
a = jk([xk]) for some k and xk ∈ Xk, and a = Φ([ιk(xk)]).

Now we introduce another tool we will need in the following : the Grothendieck construction. It associates
to an abelian monoid an abelian group. Let (S,+) be an abelian monoid. Define

G(S) = (S × S) / ∼g

where ∼g is the equivalence relation on S × S defined by (a, b) ∼g (c, d) if and only if there exists e ∈ S
such that a+ d+ e = b+ c+ e. On can think of (a, b) as the formal difference a− b. We have the monoid
map iS : S → G(S) given by iS(a) = (a, 0). The operation [(a, b)] + [(c, d)] = [(a+ c, b+d)] on S×S turns
G(S) into an abelian group. It has the following universal property, whose proof is a simple verification.

Proposition 2.1.2. Let S be an abelian monoid. For any monoid map f from S to an abelian group H,
there is a unique group homomorphism f̃ : G(S)→ H such that the following diagram commutes

S H

G(S)

f

iS
f̃

Moreover f̃ is given by f̃([(x, y)]) = f(x)− f(y).

Given two abelian monoids S and T , and a monoid map ϕ : A → B, one can associate a group
homomorphism G(ϕ) : G(S)→ G(T ), by setting Gϕ([x, y]) = [(ϕ(x), ϕ(y))]. It is easy to check that this
is well-defined and is a homomorphism. This construction turns G into a functor from the category cMon
of abelian monoids to the category Ab of abelian groups.
Example 2.1.2. The Grothendieck construction is exactly what we use to get Z = G(N) from N.

2.2 The functor K0

Now we are ready to define the group K0 for a unital C∗-algebra. The following is mainly based on [Bla86],
[MM15] and [NdK16]. We will denote byM∞(A) the set

⋃+∞
n=1Mn(A). Let A be a unital C∗-algebra.

We have the sequence of inclusions of Hausdorff spaces

P1(A) ⊂ P2(A) ⊂ P3(A) ⊂ · · ·

where each inclusion is the embedding a 7→ diag(a, 0). π0 is a functor from the category Top of topological
spaces to the category Set of sets. Hence, a map f : X → Y between two topological spaces X and Y ,
induces the map π0f , often still denoted by f , defined by π0f([x]) = [f(x)]. So we have the sequence of
maps

π0P1(A)→ π0P2(A)→ π0P3(A)→ · · ·

and we define
V (A) = lim

i
π0(Pi(A))

From corollary 2.1.1, we have the bijection V (A) ' π0(limi Pi(A)). It means that each element of V (A) is
of the form [p] where p ∈ Pn(A) for some n (also seen as an infinite matrix with p in the upper-left corner
and zeros otherwise) and where [p] denotes the path component of the image of p in the direct limit. So
we can give V (A) a monoid structure, by setting [p] + [q] = [p⊕ q].

Proposition 2.2.1. With this addition, V (A) is an abelian monoid.

Proof. Firstly, this operation is well defined, because, if p ∼h p′ by γ1(t) and q ∼h q′ by γ2(t), then
p⊕q ∼h p′⊕q′ by γ1(t)⊕γ2(t). It is a simple verification to see that it is a monoid, with [0] as the identity
element. Commutativity comes from the fact that p⊕ q ∼h q ⊕ p, as we saw in proposition 1.2.1.
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Finally, we define
K0(A) = G(V (A))

In fact, since then ([p], [q]) ∼g ([p′], [q′]) implies p⊕ q′ ⊕ r ∼h p′ ⊕ q ⊕ r for some r ∈ P∞(A), we can see
any element of the group K0(A) as a formal difference [p]− [q] where p and q are projections in matrices
over A and where, in virtue of the subsection 1.2, [.] denotes the equivalent class under ∼h, ∼u or ∼ in
P∞(A). Given two unital C∗-algebras A and B, and a homomorphism ϕ : A→ B, one can associate a
group homomorphism K0(ϕ), often denoted by ϕ∗, by ϕ∗([p] − [q]) = [ϕ(p)] − [ϕ(q)], where ϕ extends
entrywisely to matrices over A. This construction turns K0 into a functor from the category uC∗ of unital
C∗-algebras to the category Ab of abelian groups. Next proposition will help us to draw a more simple
picture of K0(A).

Proposition 2.2.2. Let p, q ∈ P(A). If pq = qp = 0, then p⊕ q ∼h (p+ q)⊕ 0.

Proof. For t ∈ [0 , 1], consider

γ(t) =
(
p 0
0 0

)
+R(t)

(
0 0
0 q

)
R(−t)

Then, by a simple computation, we see that γ is a path of projections in P2(A) connecting p ⊕ q and
(p+ q)⊕ 0.

From now on, we denote by `n the identity matrix 1n ofMn(A) viewed inMm(A) for m ≤ n as well as
inM∞(A) : `n = 1n ⊕ 0m−n. Note that `0 = 0 inM∞(A).

Corollary 2.2.1. Let x ∈ K0(A). Then x = [p]− [`k] for some projection p ∈ P∞(A) and some k ∈ N.

Proof. We know that x = [p] − [q] for some projections p, q ∈ Pn(A) and some n. Then 1n − q is a
projection and

x = [p] + [1n − q]− ([1n − q]− [q]) = [p⊕ (1n − q)]− [(1n − q)⊕ q] = [p⊕ (1n − q)]− [`n]

since (1n − q)q = 0.

The following proposition states that K0 preserves direct sum.

Proposition 2.2.3. K0(A⊕B) ∼= K0(A)⊕K0(B)

Proof. Note thatMn(A⊕B) ∼=Mn(A)⊕Mn(B). Consider the two projection maps prA : A⊕B → A,
prB : A⊕B → B. By functoriality of K0, they induce homomorphisms (prA)∗ : K0(A⊕B)→ K0(A) and
(prB)∗ : K0(A⊕ B)→ K0(B). Then consider the homomorphism Φ = (prA)∗ ⊕ (prB)∗ : K0(A⊕ B)→
K0(A)⊕K0(B). Let [p]− [p] ∈ K0(A⊕ B) such that Φ([p]− [q]) = 0, where p, q ∈ P∞(A⊕ B). Write
p = (pA, pB) and q = (qA, qB) where pA, qA ∈ P∞(A) and pB , qB ∈ P∞(B). Then [pA] = [qA] and
[pB] = [qB]. So there is partial isometries vA ∈ M∞(A) and vB ∈ M∞(B) such that pA = v∗AvA,
qA = vAv

∗
A and pB = v∗BvB , qB = vBv

∗
B . Hence, v = (vA, vB) ∈M∞(A⊕B) is a partial isometry between

p and q. It shows that Φ is injective. For the surjectivity, if ([pA]− [qA], [pB]− [qB]) ∈ K0(A)⊕K0(B),
then it is equal to ϕ([(pA, pB)]− [(qA, qB)])

A is not necessary unital. So we want to define a compatible K0 for non-unital C∗-algebras. Recall from
the definition of the unitalization A+ of A (see 1.1) that we have the short exact sequence of C∗-algebras

0 −→ A −→ A+ −→ C −→ 0

which splits by λ→ (0, λ) (namely a map whose right composition with the third arrow gives the identity
on C). Since K0 is a functor, the third arrow induces on K-theory a map K0(A+)→ K0(C). We define

K0(A) = ker(K0(A+)→ K0(C))

Note that this definition is compatible with the previous one in the case of unital C∗-algebras. Indeed,
suppose A is unital. Then A⊕ C ∼= A+ as C∗-algebras, by the isomorphism (a, λ) 7→ (a− λ, λ). Hence,
by proposition 2.2.3, K0(A+) ∼= K0(A)⊕K0(C), and so ker(K0(A+)→ K0(C)) ∼= K0(A). Note that this
new definition extends K0 to a functor from C∗ to Ab and that 2.2.3 still holds for non-unital C∗-algebras
(split-exactness of K0 (see subsection 2.4) will give us a proof later on). Another important fact about K0
is that it is homotopy invariant.
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Proposition 2.2.4. Let A and B two C∗-algebras, and ϕ,ψ : A→ B two homotopic homomorphisms.
Then ϕ and ψ induce the same map ϕ∗ = ψ∗ : K0(A)→ K0(B).

Proof. Denote by F : A→ C([0 , 1], B) the homotopy between ϕ and ψ : ev0 ◦ F = ϕ and ev1 ◦ F = ψ.
Since unitalization,Mn and P are functors, it induces a map F+

n : Pn(A+) → Pn(C([0 , 1], B+). Note
that, if p ∈ Pn(A+) for some n, then evt ◦ F+

n (p) is a path from ϕ+
n (p) to ψ+

n (p). Let [p]− [q] ∈ K0(A+),
where p, q ∈ Pn(A+) for some n. Hence

ϕ+
∗ ([p]− [q]) = [ϕ+

n (p)]− [ϕ+
n (q)] = [ψ+

n (p)]− [ψ+
n (q)] = ψ+

∗ ([p]− [q])

So ϕ+
∗ = ψ+

∗ . Thus, their restrictions ϕ∗ and ψ∗ to ker(K0(A+)→ K0(C)) are equal.

Corollary 2.2.2. Given two C∗-algebras A and B, if A ≈ B, then K0(A) ∼= K0(B).

Proof. Let f : A → B and g : B → A two homotopy equivalences which implement A ≈ B. Then, by
definition, f ◦ g and g ◦ f are respectively homotopic to idB and idA. Hence they induces homomorphisms
f∗ ◦ g∗ = idK0(B) g∗ ◦ f∗ = idK0(A). Thus f : K0(A)→ K0(B) is an isomoprhism.

Now let us compute our first K-group : K0(C).

Lemma 2.2.1. For any n ≥ 1, the map tr : π0Pn(C)→ J0 , nK induced by the trace tr of matrices is a
bijection.

Proof. First we need to show that this map is well defined, ie. that the trace is constant on the path
connected components of Pn(C) and that its image is contained in J0 , 1K. If p, q ∈ Pn(C) are in the
same path component, then they are unitarily equivalent by corollary 1.2.1, so they have the same trace.
Now let p ∈ Pn(C). Then, since p is idempotent, its Jordan normal form is `k for some k ≤ n. And so
0 ≤ tr(p) ≤ n. Let us prove that this map is a bijection. If two projections p, q have the same trace,
then they share the same Jordan normal form `k for some k ≤ n : p = z`kz

−1 and q = w`kw
−1 for some

z, w ∈ GLn(C). Since GLn(C) is path connected, there is a path of invertible xt from z to w. Hence
xt`kx

−1
t is a path of projections connecting p and q, which shows injectivity. For surjectivity, every

k ∈ J0 , nK is the image of the path component of the projection `k.

Proposition 2.2.5. K0(C) ∼= Z and [`1] is a generator.

Proof. Following the previous lemma, it is easy to see that the diagram

π0P1(C) π0P2(C) π0P3(C) · · · π0Pk(C) · · ·

Ntr

tr tr
tr

commutes. Hence the universal property of the direct limit (see proposition 2.1.1) gives us a map
tr : limi π0(Pi(C))→ N, which is injective since the induced map tr are by the previous lemma. And it
is obviously surjective. Furthermore, since tr(`k ⊕ `l) = k + l, tr is a map of monoids from V (C) to N.
So, by functoriality of the Grothendieck contruction, it extends to an isomorphism of groups K0(C)→ Z.
Finally, [`1] generates V (C) and so generates K0(C).

2.3 The functor K1 and higher K-functors
In this subsection, we define the group K1(A) for a C∗-algebra A, show its main properties and how K1
and K0 are related. We will see that K1 is a functor C∗ → Ab, preserves direct sums and is an homotopy
invariant. The definition which follows comes from [RLL00], and some proofs come from [Bla86].
Let A be a C∗-algebra. Let us construct K1(A). We have the sequence of inclusions

U1(A+) ⊂ U2(A+) ⊂ U3(A+) ⊂ · · ·

where each inclusion is the embedding u 7→ diag(u, 1). So, consider on U∞(A+) =
⋃+∞
n=1 Un(A+) the

equivalence relation ∼1 defined by : u ∼1 v if and only if there is a path of unitaries connecting u and v
in Un(A+) for some n. The proof that it defines a equivalence relation is a simple verification. Note that
we will often see any matrix a ∈Mn(A), as a matrix inMm(A), still denoted by a, under the embedding
above, for all m ≥ n.
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Definition 2.3.1. K1(A) = U∞(A+)/ ∼1

Now let us define a group structure on K1(A) by defining on K1(A) the binary operation [u] + [v] = [uv].
This operation is well-defined (since the product of paths from u to u′ and from v to v′ respectively is a
path connecting uv and u′v′), associative, and has the identity 0 = [1], where 1 = 1n ∈M∞(A+) for any
n ≥ 1. It leads us the following proposition.

Proposition 2.3.1. This operation turns K1(A) into an abelian group, and

∀[u], [v] ∈ K1(A), [u] + [v] = [uv] = [u⊕ v] = [vu]

Proof. We just need to show the equalities, for commutativity of the operation. Let u, v ∈ Un(A+) for
some n. Define

U(t) = R(t)
(
v 0
0 1

)
R(−t) ∈ U2n(A+)

This is a path of unitaries from v⊕ 1n to 1n ⊕ v. Hence uU is path of unitaries from uv⊕ 1n to u⊕ v and
Uu is a path of unitaries from vu to u⊕ v. Thus [uv] = [u⊕ v] = [vu].

Since Un(C) is path connected for any n ≥ 1, we can directly deduce the following proposition.

Proposition 2.3.2. K1(C) = 0

Since unitalization and Mn are functors, it is easy to see that K1 is a functor C∗ → Ab. For a
homomorphism ϕ : A→ B, like for K0, we will also denote by ϕ∗ the induced map K1(ϕ), since context
will always be clear. Now let us mention a first link between K1 and K0. First, introduce the suspension
of A.

Definition 2.3.2. The suspension of A, denoted by SA is defined by SA = C0(R, A), the set of continuous
functions from R to A vanishing at infinity.

Remark 2.3.1. Note that SA is a non-unital C∗-algebra. Moreover, it is easy to see that

SA ∼= {f ∈ C([0 , 1], A) | f(0) = f(1) = 0} ∼=
{
f ∈ C(S1, A)

∣∣ f(1) = 0
}

since S1 is homeomorphic to the one-point compactification R ∪ {∞} of R.
If we have a homomorphism of C∗-algebras ϕ : A → B, then we get the induced ∗-homomorphism
Sϕ : SA → SB defined by Sϕ(f) = ϕ ◦ f . It turns S into a functor C∗ → C∗. We denote by Sn the
composition of S n times. Note that SnA ∼= C0(Rn, A). Then, for every n ∈ N, we define the functor
K−n = K0 ◦ Sn. We can see that S preserves homotopy. Indeed, if Φ : A→ C([0 , 1], B) is an homotopy
between two homomorphisms ϕ and ψ, then the following map is an homotopy between Sϕ and Sψ :

SΦ : SA −→ C([0 , 1],SB)
f 7−→ Φ ◦ f

Proposition 2.3.3. There is a natural isomorphism K1 ∼= K−1.

Proof. We have to find an isomorphism θA for each C∗-algebras A, such that, for every homomorphism
ϕ : A→ B between C∗-algebras A and B, the following diagram commutes :

K1(A) K1(B)

K0(SA) K0(SB)

ϕ∗

θA θB

Sϕ∗

First, let us define θA. Let [u] ∈ K1(A), where u ∈ Un(A+). We have u ⊕ u∗ ∼1 uu
∗ = 12n for n large

enough (see proposition 2.3.1), by some path of unitaries zt from 12n to u⊕ u∗. Set ft = zt`nz
∗
t . Then,

noting that

(SA)+ ∼=
{
f ∈ C([0 , 1], A+)

∣∣ f(0) = f(1) = λ1 and f(t) = a(t) + λ1 for λ ∈ C, a(t) ∈ A
}

we see that f ∈ P2n((SA)+). Finally define θA([u]) = [f ] − [`n]. Since ev0(f) = `n, we have θA([u]) ∈
K0(SA) = ker(ev0)∗, with (SA)+ seen as above.
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We have to prove that it is well defined. Let [u] = [v] ∈ K1(A), where u, v ∈ Un(A+). Then u ∼1 v,
and so v∗u ∼1 1n and 1n ∼1 vu∗, by paths of unitaries at from 1n to v∗u and bt from 1n to vu∗

respectively. Now, let zt and wt be paths of unitaries respectively from 12n to u ⊕ u∗ and from 12n
to v ⊕ v∗, as in the definition of θA above. And set ft = zt`nz

∗
t and gt = wt`nw

∗
t . Then, setting

xt = wt(at ⊕ bt)z∗t ∈ U2n(A+), we get x ∈ U2n((SA)+) and xtftx∗t = gt, so f ∼u g in P2n((SA)+). Thus
[f ] = [g], and so θA([u]) = [f ]− [`n] = [g]− [`n] = θA([v]). Now, θA is easily seen to be a homomorphism
between K1(A) and K−1(A) and it is a simple verification to show that the diagram above commutes.

Let us prove the injectivity. Let [u] ∈ K1(A) such that θA([u]) = [1n] = 0, and let z, f be as above.
Then [f ] = [`n], so there is a unitary x ∈ U2n((SA)+) such that xtftx∗t = `n. So, since x0 ∈ U2n(C),
we may assume that x0 = 12n (by conjugating the previous equality by x0 for instance). Note that
xtzt`nz

∗
t x
∗
t = `n, ie. xtzt commutes with `n, and so xtzt must be of the form

xtzt =
(
ct 0
0 dt

)
where c, d ∈ Un((SA)+), and, since x1 = x0 = 12n, we have(

c0 0
0 d0

)
= 12n and

(
c1 0
0 d1

)
= x1(u⊕ u∗) =

(
u 0
0 u∗

)
Hence, ct is a path of unitaries from 1n to u, which shows that 1n ∼1 u, and so [u] = [1] = 0.

For surjectivity, let [f ]− [`k] ∈ K0(SA). So f is a path of projections in Pn(A+) (where we may suppose
n ≥ 2k) such that f0 = f1 ∈ C and ft ≡ f0 mod A. And then, in K0(C), [f0] = [`k], so f0 = `k up to
conjugacy by a unitary and we may assume that f1 = f0 = `k. Furthermore, since [ft] = [lk] in K0(A+)
for all t, ft ≡ `k mod A. Now, by proposition 1.2.2, there is a path of unitaries wt in Un((SA)+) such
that w0 = 1n and ft = wtf0w

∗
t = wt`kw

∗
t . Then w1 = w0 = 1n and wt ≡ 1n mod A. Since f1 = `k, wt

commutes with `k, and so wt must be of the form

wt =
(
u 0
0 v

)
where u ∈ Uk(A+) and v ∈ Un−k(A+). By properties of ∼1 (see proposition 2.3.1), we get(

v∗ 0
0 1k

)(
u∗ 0
0 1n−k

)
∼1

(
1k 0
0 v∗

)(
u∗ 0
0 1n−k

)
=
(
u∗ 0
0 v∗

)
= w∗1 = 1n

ie. 1n−k ∼1 v
∗(u∗ ⊕ 1n−2k). So there is a path of unitaries at in Un−k(A+) (expand n if necessary) from

1n−k to v∗(u∗ ⊕ 1n−2k). Furthermore, by using the properties of ∼1, it is easy to see thatu 0 0
0 u∗ 0
0 0 1n−2k

 ∼1 1n

Then, let zt be a path of unitaries from 1n to u ⊕ u∗ ⊕ 1n−2k in Un(A+). Set gt = zt`kz
∗
t , which

defines an element of Pn((SA)+) (as in the definition of θA above), and so θA(u) = [g]− [`k]. And set
xt = wt(1k ⊕ at)z∗t , which defines a element of Un((SA)+) such that xtgtx∗t = ft, and so [f ] = [g] in
K0(SA). Thus, we have [f ]− [`k] = [g]− [`k] = θA([u]).

This last proposition tells us that K1 shares many properties of K0, actually those that S preserves :
homotopy invariance, direct sum (as we will prove later on). We can already deduce the following two
statements.

Proposition 2.3.4. Let A and B two C∗-algebras, and ϕ,ψ : A→ B two homotopic homomorphisms.
Then, for each n ≤ 1, ϕ and ψ induce the same map ϕ∗ = ψ∗ : Kn(A)→ Kn(B).

Corollary 2.3.1. Given two C∗-algebras A and B, if A ≈ B, then Kn(A) ∼= Kn(B) for every n ≤ 1.
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2.4 Half and split exactness
Here we prove a relevant property and a first important step toward Bott periodicity theorem : half-
exactness of the functors Kn for n ≤ 1. Then split-exactness will extend this result. First let us look at
this property for K0. The following proofs are based on [Bla86] and [Mur90].

Lemma 2.4.1. Let ϕ : A→ B be a surjective homomorphism between two unital C∗-algebras A and B.
Then for any unitary u ∈ B, the matrix u⊕ u∗ is in the image of the map U2(A)→ U2(B) induced by ϕ.

Proof. We have (
u 0
0 u∗

)
=
(

1 u
0 1

)(
1 0
−u∗ 1

)(
1 u
0 1

)(
0 −1
1 0

)
Since ϕ is surjective, there are lifts v of u and w of u∗. Then(

1 v
0 1

)(
1 0
−w 1

)(
1 v
0 1

)(
0 −1
1 0

)
is a product of unitaries (so is unitary) and a lift of u⊕ u∗.

Proposition 2.4.1. Let
0 −→ I −→ A −→ B −→ 0

be a short exact sequence of C∗-algebras. Then the induced sequence

K0(I) −→ K0(A) −→ K0(B)

is exact. In other words, the functor K0 is half exact.

Proof. Denote by i the second arrow of the short exact sequence of C∗-algebras, and by π the third one.
First, by functoriality of K0, we have the induced sequence, and π∗ ◦ i∗ = K0(π) ◦K0(i) = K0(π ◦ i) =
K0(0) = 0. Then im(π∗ ◦ i∗) = 0. Hence im(i∗) ⊂ ker(π∗). Let us show the other inclusion. Note that
unitalization gives us the short exact sequence

0 −→ I+ ι+−−−→ A+ π+

−−−→ B+ −→ 0

Let [p] − [`k] ∈ ker(π∗) ⊂ K0(A) ⊂ K0(A+) where p ∈ Pn(A+) and k ≤ n (see corollary 2.2.1). Then
[π+(p)] = [π+(`k)] = [`k]. Hence, there is a unitary u ∈ Un(B+) such that uπ+(p)u∗ = `k, and so(

u 0
0 u∗

)(
π+(p) 0

0 0n

)(
u∗ 0
0 u

)
=
(
`k 0
0 0n

)
Then, by lemma 2.4.1, there is v ∈ U2n(A+) such that π+(v) = u⊕u∗. Consider q = v(p⊕0n)v∗ ∈ P2n(A+).
We have π+(q) = `k. Hence q − `k ∈ ker(π+) = im(ι+). Furthermore `k = ι+(`k), so q ∈ im(ι+), and
[q] − [`k] ∈ im(ι+∗ ). Thus, [p] − [`k] = [v(p ⊕ 0n)v∗] − [`k] = [q] − [`k] ∈ im(ι+∗ ). Now, by reasoning on
the arrows of the following induced commutative diagram with vertical short half exact sequences (by
definition of K0 for non-unital C∗-algebras)

K0(I) K0(A) K0(B)

K0(I+) K0(A+) K0(B+)

K0(C) K0(C) K0(C)

ι∗ π∗

ι+∗ π+
∗

it is a simple verification to show that [p]− [`k] ∈ K0(I) and so [p]− [`k] ∈ ker(π∗).

Remark 2.4.1. We will often use short exact sequences where I is an ideal of A and B = A/I.
Now, in order to show the half-exactness of the other functors K∗, thanks to proposition 2.3.3, it suffices
to discuss the exactness of the suspension.
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Proposition 2.4.2. Let
0 −→ I −→ A −→ B −→ 0

be a short exact sequence of C∗-algebras. Then the induced sequence
0 −→ SI −→ SA −→ SB −→ 0

is exact. In other words, the functor S is exact.
Proof. Denote by ι the second arrow of the short exact sequence and by π the third one. It is easy
to see that ι is injective and that im(Sι) = ker(Sπ). It remains to show that π in surjective. Let
f ∈ C0(R) and b ∈ B. By surjectivity of π, b = π(a) for some a ∈ A. Then fb = fπ(a) = Sπ(fa). So
span{fb, f ∈ C0(R), b ∈ B} ⊂ im(Sπ). Hence, by lemma 1.3.1, SB = im(Sπ).

It follows from the last two propositions and the natural isomorphism K1 ∼= K−1 the half-exactness of Kn

for every n ≤ 1.
Proposition 2.4.3. Let

0 −→ I −→ A −→ B −→ 0
be a short exact sequence of C∗-algebras. Then the induced sequence

Kn(I) −→ Kn(A) −→ Kn(B)
is exact for every integer n ≤ 1.
Proposition 2.4.4. Let

0 I A B 0
s

be a split short exact sequence of C∗-algebras. Then the induced sequence

0 Kn(I) Kn(A) Kn(B) 0

s∗

is split exact for every integer n ≤ 1.
Proof. The functor S is exact and it is easy to see that it is also split exact. Then it suffices to prove the
statement for K0. Denote by ι the second arrow of the short exact sequence and by π the third one. Since
it splits, we have π ◦ s = idB , which induces π∗ ◦ s∗ = idK0(B). Thus the induced sequence splits, and π∗ is
surjective, which gives the exactness at K0(B). Furthermore, we already know from proposition 2.4.1 the
exactness at K0(A). It just remains the exactness at K0(I), ie. injectivity of ι∗. Let [p]− [`k] ∈ ker(ι∗),
where p ∈ Pn(I+) and k ≤ n. Then [ι+(p)] = [`k]. Hence, in virtue of proposition 1.2.1, there is a unitary
u ∈ Un(A+) such that uι+(p)u∗ = `k. Set v = s ◦ π+(u∗)u ∈ Un(A+). Then π+(v − 1n) = 0, and so
v − 1n ∈ ker(π+) = im(ι+). It follows that there exists w ∈ Mn(I+) such that v = ι+(w). Note that
w is unitary since ι+ is injective. Then, direct computation gives us ι+(wpw∗) = `k = ι+(`k). Hence
wpw∗ = `k, ie. p ∼u `k and so [p] = [`k].

Now we can quickly prove that the functors K∗ preserves direct sums.
Proposition 2.4.5. Let A and B two C∗-algebras. Then Kn(A⊕B) ∼= Kn(A)⊕Kn(B) for every n ≤ 1.
Proof. It is simple to show that S preserves direct sums. Then it suffices to show the statement for K0.
We have the split short exact sequences

0 A A⊕B B 0
and

0 B A⊕B A 0
where the maps are obvious. By the previous proposition, they induce on K-theory the short exact
sequences

0 −→ K0(A) −→ K0(A⊕B) −→ K0(B) −→ 0
and

0 −→ K0(B) −→ K0(A⊕B) −→ K0(A) −→ 0
Then it is easy to see that the following short sequence is exact, which gives us the conclusion.

0 −→ K0(A)⊕K0(B) −→ K0(A⊕B) −→ K0(A)⊕K0(B) −→ 0
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2.5 Stability
In this subsection, we will prove another important property of K-theory : stability by tensoring by the
C∗-algebra of compact operators on a Hilbert space, ie. K0(A ⊗ K(H)) ∼= K0(A). Remember that ⊗
denotes the minimal tensor product. Stability will allow us to prove Bott periodicity theorem later on.
Before, we need some basic facts about direct limits of abelian groups : definition and two basic properties,
which will not prove here. However one can find more about more general direct limits in [Wei94] or a
simple proof of the universal property in [Mur90].
Consider the following sequence of homomorphisms of abelian groups :

G1
ϕ1−→ G2

ϕ2−→ G3
ϕ3−→ · · · ϕn−1−−−→ Gn

ϕn−−→ · · ·

Set G′ =
{

(xn)n≥1 ∈
∏
n≥1Gn

∣∣∣ ∃N ≥ 1,∀n ≥ N, xn+1 = ϕn(xn)
}
. Then G′ is a subgroup of

∏
n≥1Gn.

The quotient G′/
⊕

n≥1Gn is called the direct limit of the sequence above, denoted by G = lim−→Gn
when the homomorphisms are clear. Furthermore we define the natural homomorphism ιn : Gn → G by
denoting by ιn(xn), for every xn ∈ Gn, the image in the quotient of (01, 02, · · · , 0n−1, xn, 0n+1, · · · ) ∈ G′.
The direct limit G has the following universal property.

Proposition 2.5.1 (universal property). Let G′ be an abelian group and, for each n ≥ 1, let ρn : Gn → G′

be a homomorphism such that the diagram

Gn Gn+1

G′

ϕn

ρn

ρn+1

commutes. Then there is a unique homomorphism ρ : G→ G′ such that for each n ≥ 1 the diagram

Gn G

G′

ιn

ρn

ρ

commutes.

Proposition 2.5.2. Direct limit lim−→ is an exact functor from Ab to Ab.

Now let us study the behavior of K-theory on certain sequences of C∗-algebras, through the following
proposition and corollary.

Proposition 2.5.3. Let A1, A2, A3, · · · and A be unital C∗-algebras such that A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ A
and

⋃
n≥1An is dense in A. Then the induced map lim−→K0(An)→ K0(A) is an isomorphism.

Proof. First let us prove injectivity. Let p ∈ Pk(A) (for some k ≥ 1). Then, since
⋃
n≥1An is dense in

A, there is a ∈ Am for some m ≥ 1, such that ‖a− p‖ ≤ 3
190 . Easy computations give us ‖a‖ < 2 and,

knowing that ‖p‖ = max |sp(p)| ≤ 1,∥∥a2 − a
∥∥ ≤ ‖a+ p‖ ‖a− p‖+ ‖p− a‖+ ‖ap− aa∗‖+ ‖aa∗ − pa∗‖+ ‖pa∗ − pa‖ < 3

19
Hence b = (a+ a∗)/2 is a self-adjoint (and so normal) element ofMk(Am) such that ‖b− a‖ < 3

190 and∥∥b2 − b∥∥ ≤ ‖b+ a‖ ‖b− a‖+
∥∥a2 − ab

∥∥+
∥∥ba− a2∥∥+

∥∥a2 − a
∥∥+ ‖a− b‖ < 3

10
Set f(λ) = λ2 − λ. It defines a continuous function on R. We deduce from the study of f that
−3/10 < f(λ) < 3/10 implies λ ∈ ]−1/3 , 1/3[ ∪ ]2/3 , 4/3[. So, since

∥∥b2 − b∥∥ = max{
∣∣λ2 − λ

∣∣ , λ ∈ sp(b)}
(using continuous functional calculus, see proposition 1.1.1), we get

sp(b) ⊂
]
−1

3 ,
1
3

[
∪
]2

3 ,
4
3

[
Let χ be the characteristic function of the interval [2/3 , 4/3] and q = χ(b). Then χ(b)∗ = χ̄(b) = χ(b) and
χ(b)2 = χ(b), ie. q ∈ Pk(Am). Furthermore, by studying the fonction λ 7→ χ(λ)− λ on sp(b), we get

‖q − p‖ ≤ ‖χ(b)− b‖+ 1
2 ‖a

∗ − a‖+ ‖a− p‖ < 1
3 + 3

190 + 3
190 < 1
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Hence, by considering the first part of the proof of proposition 1.2.2, replacing pt by the constant path q,
we get u∗t put = q where ut ∈ Uk(Am) is a constant path of unitaries. So p ∼u q in Pk(A) and [p] = [q]
in K0(A). Thus [p] is the image of the map K0(Am)→ K0(A), and so in the image of the induced map
lim−→K0(An)→ K0(A), considering the universal property of direct limits. This shows surjectivity.
For injectivity, let p0, p1 ∈ Pk(Am) (for some k,m ≥ 1) such that p0 ∼h p1 in Pk(A). Then there is a
path of projection pt in Mk(A) from p0 to p1. By using compactness of [0 , 1] and by considering an
appropriate partition 0 = t0 < t1 < · · · tN = 1 of [0 , 1], one can easily show that

⋃
n≥1 C([0, 1], An) is

dense in C([0, 1], A) and so that C([0, 1], A1) ⊂ C([0, 1], A2) ⊂ · · · ⊂ C([0, 1], A) fulfill the condition of
the theorem we are proving. So we can apply the same reasoning as in the first part of this proof to
find a projection qt ofMk(C([0, 1], Am′)) ∼= C([0, 1],Mk(Am′)) for some m′ ≥ m, such that q0 = p0 and
q1 = p1. Thus p0 ∼h p1 in Pk(Am′) and so [p0] = [p0] in K0(Am′).

This result extends to non-unital C∗-algebras.

Corollary 2.5.1. Let A1, A2, A3, · · · and A be C∗-algebras such that A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ A and⋃
n≥1An is dense in A. Then lim−→K0(An) ∼= K0(A).

Proof. Remember that the short exact sequence

0 −→ An −→ A+
n −→ C −→ 0

splits and so induces a short exact sequence on K-theory :

0 −→ K0(An) −→ K0(A+
n ) −→ Z −→ 0

Then, by proposition 2.5.2 (exactness of direct limits) and using the previous proposition with A+ since
lim−→A+

n = A+, we get the short exact sequence

0 −→ lim−→K0(An) −→ K0(A+) −→ Z −→ 0

Thus, by definition of K0 for non-unital C∗-algebras, we have lim−→K0(An) ∼= ker(K0(A+) → Z) =
K0(A).

The last step before concluding on stability of K-theory is the following proposition, first for unital
C∗-algebras and then for non-unital C∗-algebras as previously.

Proposition 2.5.4. Let A be a unital C∗-algebra and n ≥ 1. Then K0(Mn(A)) ∼= K0(A).

Proof. For every k ≥ 1, consider the map

mn
k : Mk(A) −→ Mkn(A)

a 7−→ a⊕ 0k(n−1)

Then we have the commutative diagram

P(A) P2(A) · · · Pk(A) · · ·

Pn(A) P2n(A) · · · Pkn(A) · · ·

mn
1 mn

2 mn
k

So, by considering the universal property of direct limits of topological spaces, we get an induced map

mn : limk Pk(A) −→ limk Pkn(A)
[p] 7−→ [p⊕ 0k(n−1)]

whose the inverse is
mn : limk Pkn(A) −→ limk Pk(A)

[p] 7−→ [p]
Therfore mn is a bijection and so it induces a bijection mn : V (A)→ V (Mn(A)) between the monoids
V (A) and V (Mn(A)). Furthermore, given p ∈ Pk(A) and q ∈ Pl(A), we have

mn
k+l(p⊕ q) = p⊕ q ⊕ 0(k+l)(n−1) ∼h p⊕ 0k(n−1) ⊕ q ⊕ 0l(n−1) = mn

k (p)⊕mn
l (q)

by proposition 1.2.1. Thus mn is an isomorphism of abelian monoids. So it induces an isomorphism
between the groups K0(A) and K0(Mn(A)).
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Corollary 2.5.2. Let A be a C∗-algebra and n ≥ 1. Then K0(Mn(A)) ∼= K0(A).

Remark 2.5.1. In fact, one can show that we have a natural isomorphism between the functors K0 and
K0 ◦Mn for all n ≥ 1. This property is called Morita invariance.
Finally we can deduce stability of K-theory. For an Hilbert space H, K(H) denotes the algebra of compact
operators on H.

Proposition 2.5.5. Let A be a unital C∗-algebra. Then K0(A ⊗ K(H)) ∼= K0(A) for any separable
Hilbert space H.

Proof. If H is finite-dimensional, then this proposition is just the previous corollary. Now suppose that
H is infinite-dimensional. Let (hn)n≥1 be a Hilbert basis of H. Set Hn = span(hi)1≤i≤n for every
n ≥ 1. Then, since finite rank operators are dense in K(H),

⋃
n≥1A ⊗ B(Hn) is dense in A ⊗ K(H).

Besides, B(Hn) ∼= Mn(C), and A ⊗Mn(C) ∼= Mn(A) by the homomorphism which maps a ⊗M to
the matrix M(a) whose coefficients are those of M times a. Thus, by the previous two corollaries,
K0(A) ∼= lim−→K0(A⊗ B(Hn)) ∼= K0(A⊗K(H))

The following corollary comes from the fact that SA ∼= C0(R)⊗A.

Corollary 2.5.3. Let A be a C∗-algebra. Then Kn(A⊗K(H)) ∼= Kn(A) for any separable Hilbert space
H and n ≤ 1.

Remark 2.5.2. We often write K0(A⊗K) ∼= K0(A), where K = K(`2(N)).
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3 Bott periodicity
One of the most important results of K-theory is Bott periodicity theorem, which will give us an
isomorphism between K−2(A) and K0(A) and gives rise to a 6-term exact sequence from the half infinite
exact sequence. This 6-term exact sequence follows from the index map and is a very powerful tool to
compute the K-theory of some C∗-algebras. In fact, the purpose of this section is to prove Bott periodicity
theorem and then the 6-term exact sequence as a final result. The proof we will study here is a proof of
Joachim Cuntz that we can read in his article [Cun84] or in [NdK16] and [Mur90]. It mainly consists of
showing K-contractibility of a certain C∗-subalgebra of the Toeplitz algebra. This proof has the advantage
of not using directly the definitions of K0 and K1 and so of being very general by relying only on homotopy
invariance, half-exactness and stability of the functor. The following first subsection is based on [Bla86]
with lemmas coming from [NdK16].

3.1 Half infinite exact sequence
First, let us construct the half infinite exact sequence and introduce the index map, which links K1 to K0.
Let A be a C∗-algebra and I an ideal of A. Then we have the short exact sequence of C∗-algebras

0 −→ I
ι−−→ A

π−−→ A/I −→ 0

Then, recall that it induces the following exact sequences on K-theory :

K1(I) ι∗−−→ K1(A) π∗−−−→ K1(A/I) and K0(I) ι∗−−→ K0(A) π∗−−−→ K0(A/I)

One wants to define a map from K1(A/I) to K0(I) such that the sequence obtained from the concatenation
of these two sequences is exact. Note that A+/I ∼= (A/I)+ via the factorization of the surjective
homomorphism a+λ1→ π(a)+λ1, and denote by π+ : A+ → A+/I the quotient map. Let [u] ∈ K1(A/I),
where u ∈ Un(A+/I). Then, in virtue of lemma 2.4.1, there is a lift z ∈ U2n(A+) of u⊕u∗ : π+(z) = u⊕u∗.
Set

∂([u]) = [z`nz∗]− [`n]
Before proving that this expression defines the wanted map, we need the following lemma.
Lemma 3.1.1. Given a C∗-algebra A and an ideal I ⊂ A, we have

C([0 , 1], A)
/
C([0 , 1], I) ∼= C([0 , 1], A/I)

Proof. Consider the map Φ : C([0 , 1], A)→ C([0 , 1], A/I) defined by ϕ(f) = π ◦ f , where π : A→ A/I
is the quotient map. Then Φ is a homomorphism of C∗-algebras and is valued in C([0 , 1], A/I) as
well (it follows directly from the definition of the norm on A/I). A simple verification shows that
ker Φ = C([0 , 1], I). For surjectivity, note that

{fπ(a), f ∈ C([0 , 1]), a ∈ A} ⊂ imΦ ⊂ C([0 , 1], A/I)

So, since imΦ is closed (see remark 1.1.3) and the first set on the left is dense in C([0 , 1], A/I) by lemma
1.3.1, Φ is surjective. Thus we get an isomorphism by factorization.

Proposition 3.1.1. ∂ is a homomorphism from K1(A/I) to K0(I), called the index map.
Proof. Let us show that ∂ is well defined. Let [u] ∈ K0(A) and z ∈ U2n(A+) as above. First, ∂([u]) ∈ K0(I).
Indeed, a direct computation tells us that π+(z`nz∗) = `n. So z`nz∗ − `n ∈M2n(I) ⊂M2n(I+). Since
`n ∈M2n(I+), we get that z`nz∗ ∈M2n(I+), and it is easily seen to be a projection. Furthermore, since
z`nz

∗ ≡ `n mod I, ∂([u]) = [z`nz∗]− [`n] ∈ ker(K0(I+)→ K0(C)) = K0(I). Now we prove that ∂([u])
does not depend on the lift z. Let z′ ∈ U2n(A+) be another lift of u ⊕ u∗. Then z′z∗ ∈ U2n(A+) and
π+(z′z∗) = 12n. Hence z′z∗ − 12n ∈ M2n(I) ⊂ M2n(I+). That is why z′z∗ ∈ U2n(I+). Moreover this
unitary conjugates z`nz∗ to z′`nz′∗ : z`nz∗ ∼u z′`nz′∗ in P2n(I+). So [z′`nz′∗] = [z`nz∗], which shows
that ∂([u]) does not depend on the lift. It remains to prove that it does not depends on the representing
element of the class. Let v ∈ Un(A+/I) such that [u] = [v]. Then there is a path of unitaries yt from u to
v. Hence, by lemma 3.1.1, this path defines an element of C([0 , 1], A+)/C([0 , 1], I), and so, by lemma
2.4.1, there is a lift xt ∈ U2n(C([0 , 1], A+)) of yt ⊕ y∗t . Then π+(x0) ∈ U2n(A+) is a lift of u⊕ u∗, π+(x1)
is a lift of v ⊕ v∗, and π+(xt)`nπ+(xt)∗ is a path of projections. Thus

∂([u]) = [π+(x0)`nπ+(x0)∗]− [`n] = [π+(x1)`nπ+(x1)∗]− [`n] = ∂([v])

Finally, ∂ is easily seen to be a homomorphism.
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In order to show exactness, we need the following lemma on path lifting of unitaries. Its proof involves
holomorphic functional calculus, which we do not describe here. However one can find an introduction to
this theory in [DS88].

Lemma 3.1.2. Let ut be a path in U(A/I) and U ∈ U(A) such that π(U) = u0, where A is a unital
C∗-algebra and I ⊂ A an ideal. Then there exists a path Ut in U(A) such that π(Ut) = ut for all t ∈ [0 , 1]
and U0 = U .

Proof. First suppose that ‖u∗0ut − 1‖ < 1 for all t ∈ [0 , 1]. Then, since ln is a holomorphic function on
a neighborhood of

⋃
t∈[0,1] sp(u∗0ut) ⊂ {z ∈ C | <(z) > 0}, wt = ln(u∗0ut) defines a path in A/I. Hence,

by lemma 3.1.1, there is a lift Wt in C([0 , 1], A) of the path wt. We can choose Wt starting at 0, by
replacing Wt by Wt −W0 if necessary, since w0 = 0. Define Zt = UeWt . Then Zt is a path of invertible in
A. So, by considering the polar decomposition of Zt for all t ∈ [0 , 1] (see proposition 1.1.3), we find that
Ut = Zt |Zt|−1 is a path of unitaries in A. Furthermore π(Ut) = u0u

∗
0ut(u∗tu0u

∗
0ut)−1/2 = ut and U0 = U .

Now consider the general case. Then, since ut is continuous on the compact [0 , 1], there exists a partition
0 = t0 < t1 < · · · < tn−1 < tn = 1 such that ∀t ∈ [ti , ti+1] , ‖uti − ut‖ < C−1, where C > 0 is such that
supt∈[0,1] ‖ut‖ ≤ C. So

∥∥u∗tiut − 1
∥∥ < 1. Hence, we can apply the first point iteratively with U i−1

ti in the
role of U , to get a path U it on each interval [ti , ti+1]. Thus, by gluing the paths U it , we obtain the desired
path of unitaries.

Proposition 3.1.2. The sequence

K1(I) ι∗−−→ K1(A) π∗−−−→ K1(A/I) ∂−−→ K0(I) ι∗−−→ K0(A) π∗−−−→ K0(A/I)

is exact.

Proof. First, let us prove the exactness at K1(A/I). Let u ∈ Un(A+) for some n ≥ 1. Then π+(u) is
unitary inMn(A+/I), and u⊕ u∗ is a lift of π+(u)⊕ π+(u)∗. Hence, since (u⊕ u∗)`n(u∗ ⊕ u) = 0, we
have ∂([u]) = [(u⊕ u∗)`n(u⊕ u∗)∗]− [`n] = 0, which shows that im(π∗) ⊂ ker ∂. Now, let u ∈ Un(A+/I)
such that ∂([u]) = 0, ie. [z`nz∗] = [`n] for some lift z ∈ U2n(A+) of u⊕u∗. Then there exists w ∈ U2n(I+)
which conjugates z`nz∗ to `n. We have w ≡ λ mod I, ie. π+(w) = λ, where λ ∈ U2n(C). Set x = λ∗wz.
Then, since λ∗w ≡∈ U2n(I+), x ∈ U2n(I+). Note that x commutes with `n. Hence x is must be of the
form

x =
(
a 0
0 b

)
where a, b ∈ Un(I+). Furthermore, a direct computation shows that π+(x) = u⊕ u∗. So π+(a) = u, ie. a
is a lift of u, and so [u] = π∗([a]) ∈ im(π∗). This finishes to prove the exactness at K1(A/I).

For exactness at K0(I), we have im∂ ⊂ ker(ι∗). Indeed, given u ∈ Un(A+/I) and z ∈ U2n(A+) a lift of
u ⊕ u∗, ι∗(∂([u])) = [ι+(z`nz∗)] − [`n] = 0 since ι+(z`nz∗) = z`nz

∗ ∼u `n in P2n(A+). Conversely, let
x ∈ ker ι∗ ⊂ K0(I). This element can be written as a difference [p]− [`n] where k ≥ 1 and p ∈ Pkn(I+)
(see corollary 2.2.1), such that ι∗([p]− [`n]) = 0, ie. [p] = [`n] in K0(A+). Then there exists w ∈ Ukn(A+)
such that p = w`nw

∗. Furthermore, since [p]− [`n] ∈ ker(K0(A+)→ K0(C)) and so the projection of p
on C is unitarily equivalent to `n in Pkn(C), we may assume that this projection of p is `n. Hence we
have π+(p) = `n and so π+(w) commutes with `n. It follows that π+(w) is of the form

π+(w) =
(
u1 0
0 u2

)
where u1 ∈ Un(A+/I) and u2 ∈ U(k−1)n(A+/I). Then, in Ukn(A+/I), we have(

u∗1 0
0 1(k−1)n

)(
u∗2 0
0 1n

)
∼h
(
u∗1 0
0 1(k−1)n

)(
1n 0
0 u∗2

)
= π+(w∗)

ie. there is a path of unitaries from π+(w) to (u∗1⊕ 1(k−1)n)(u∗2⊕ 1n). So, by lemma 3.1.2, this last unitary
matrix has a unitary lift v ∈ Ukn(A+). Set z = (1n ⊕ v)(w ⊕ 1n). Hence π+(z) = u1 ⊕ u∗1 ⊕ 1n and

z`nz
∗ =

(
1n 0
0 v

)(
p 0
0 0n

)(
1n 0
0 v∗

)
∼u
(
p 0
0 0n

)
Thus [p]− [`n] = [z`nz∗]− [`n] = ∂([u1]) ∈ im(∂). And so ker ι∗ ⊂ im(∂).
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From this we are able to deduce the following half-infinite exact sequence.

Proposition 3.1.3. If A is a C∗-algebra and I is an ideal of A, then there exists a half-infinite exact
sequence

· · · K−n(I) K−n(A) K−n(A/I) · · · K−2(I) K−2(A) K−2(A/I)

K0(A/I) K0(A) K0(I) K−1(A/I) K−1(A) K−1(I)

Proof. First note that it follows from exactness of S (see proposition 2.4.2) that S(A/I) ∼= SA/SI. Then,
using proposition 2.3.3 and applying the previous proposition to A and its suspension SA, we get the
following two exact sequences

K−1(SI)→ K−1(SA)→ K−1(S(A/I))→ K0(SI)→ K0(SA)→ K0(S(A/I))

and
K−1(I)→ K−1(A)→ K−1(A/I)→ K0(I)→ K0(A)→ K0(A/I)

Hence, by definition of K−1 and because the last three arrows of the first sequence are the same as the
first three arrows of the second sequence, we obtain the exact sequence

K−2(I) K−2(A) K−2(A/I) K−1(I) K−1(A) K−1(A/I)

K0(A/I) K0(A) K0(I)

Remembering that K−2(A) = K0(S2A) and by iteration on the order of the suspension, we extend the
sequence to the left to get the half-infinite exact sequence.

3.2 The Toeplitz algebra
Now let us define the Toeplitz algebra T0, whose the extension 0→ K → T → C(T)→ 0 will be useful in
the proof of the Bott periodicity theorem. We will see its main properties and especially different ways of
representing it.
Denote the unit circle S1 of C by T and consider the space L2(T) with the scalar product

〈f, g〉 = 1
2π

∫ 2π

0
f(eit)g(eit) dt

It turns L2(T) into an Hilbert space whose (en)n∈Z is a Hilbert basis, where

en : T −→ T
z 7−→ zn

Then consider the subspace

H2 =

f ∈ L2(T)

∣∣∣∣∣∣ f =
∑
n≥0

fnen, (fn)n≥0 ∈ `2(N)


Let P : L2(T)→ H2 be the orthogonal projection onto H2.

Definition 3.2.1. For every f ∈ C(T), we call the Toeplitz operator with symbol f the bounded operator
Tf : H2 → H2 defined by

Tf (g) = P (fg)

Remark 3.2.1. For every f ∈ C(T), T ∗f = Tf̄ .

Definition 3.2.2. The Toeplitz algebra is defined as the closure of {Tf , f ∈ C(T)} in B(H2)
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Remark 3.2.2. Denote by S the right shift Te1 of H2 with respect to the basis (en)n∈N as well as the right
shift of `2(N). SS∗ is easily seen to be a (orthogonal) projection onto `2(N∗). Then Sn(1−SS∗)Sm is the
rank 1 operator sending em to en. This implies that K, the ideal of compact operators, is included in T .
Furthermore, for all n,m ∈ N, TenTem−Ten+m is easily seen to be a compact operator. Thus, by the Stone-
Weierstrass theorem and since an easy computation shows that ∀f, g ∈ C(T), ‖TfTg − Tfg‖ ≤ ‖f‖∞ ‖g‖∞,
TfTg − Tfg is compact for every f, g ∈ C(T).
As a straightforward consequence of this remark, we have the following characterization of the Topeplitz
algebra T .

Proposition 3.2.1. The Topeplitz algebra T is isomorphic to the C∗-subalgebra of B(`2(N)) generated
by S.

In fact, we have the following theorem by L.A. Coburn proved in [Mur90] and [Cob67].

Theorem 3.2.1. The Topeplitz algebra T ∼= C∗(S) is the universal unital C∗-algebra generated by an
isometry : for any unital C∗-algebra A and any isometry w ∈ A, there is a unique unital homomorphism
T → A which sends S to w.

Let us conclude this subsection on the Toeplitz algebra with the following important proposition.

Proposition 3.2.2. We have the short exact sequence

0→ K → T → C(T)→ 0

Proof. Let π : T → T /K the quotient map. Since S generates T , s = π(S) generates T /K. Furthermore,
since 1− SS∗ and SS∗ − S∗S both lie in K, s is unitary. Then, by the continuous functional calculus,
T /K is isomorphic to C(sp(s)). Besides, sp(s) ⊂ T. For every λ ∈ T, as a consequence of the previous
theorem, there is a homomorphism from T /K to C which maps s to λ. So sp(s) = T and T /K ∼= C(T).
The conclusion comes the standard short exact sequence

0→ K → T → T /K → 0

3.3 K-contractibility of T0

First set T0 as the ideal of the Toeplitz algebra T generated by S − 1. This section aims at proving the
K-contractibility of T0 : K0(T0 ⊗A) = 0 for any C∗-algebra A. This is the main step to prove the Bott
periodicity theorem. Let A be any C∗-algebra. We have the following diagram with horizontal and vertical
short exact sequences :

0 0 0

0 K T0 C0(R) 0

0 K T C(T) 0

0 C C 0

0 0

q

q

j ev1

where j : T → C is the homomorphism which maps S to 1 and q : T → C(T) the one which maps S
to e1 : z 7→ z. The inclusion K → T0 comes from the fact that 1 − SS∗ = −(S − 1)S∗ − (S − 1)∗ and
remark 3.2.2, since T0 is an ideal. This diagram is easily seen to be commutative apart from the map
T0 → C0(T). In fact, this map is defined in order to make the whole diagram commutative by noting that,
since ev1 ◦ q = j = 0 on T0, the image of T0 through q lies in C0(T). Now, since C, C0(T) and C(T) are
commutative and so nuclear (see proposition 1.3.2), the short sequences of the diagram above remain
exact after tensoring by A by proposition 1.3.5. Furthermore the digram still commutes. Remember that
C⊗A ∼= A and C0(R)⊗A ∼= SA.
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0 0 0

0 K ⊗A T0 ⊗A C0(R)⊗A 0

0 K ⊗A T ⊗A C(T)⊗A 0

0 A A 0

0 0

q⊗id

q⊗id

j⊗id ev1⊗id

Let ε : T → C1T be the homomorphism given by ∀x ∈ T , ε(x) = q(x)(1)1T .

Lemma 3.3.1. For any C∗-algebra A, we have

K0(T0 ⊗A) = ker(K0(T ⊗A) (ε⊗id)∗−−−−−→ K0(T0 ⊗A))

Proof. It follows easily from the definition of ε that K0(T0⊗A) ⊂ ker(ε⊗id)∗ since ε(S) = 1. Furthermore,
the map s⊗ id, where s : C ↪→ T , split the middle column. Hence, by proposition 2.4.4, K0(T0 ⊗A) =
ker(j ⊗ id)∗. Then, for every x ∈ ker(ε⊗ id)∗, we have

x ∈ ker(j ⊗ id)∗ ◦ (ε⊗ id)∗ = ker(ev1 ⊗ id)∗ ◦ (q ⊗ id)∗ = ker(j ⊗ id)∗ = K0(T0 ⊗A)

Lemma 3.3.2. Let A and B be unital C∗-algebras and let f, g : A→ B two homomorphisms such that
fg = gf = 0. Then f + g defines a homomorphism and (f + g)∗ = f∗ + g∗.

Proof. It is easy to check that f + g is a homomorphism. Let [p]− [q] ∈ K0(A), where p, q ∈Mn(A) for
some n ≥ 1. Then, using proposition 2.2.2, we get

(f + g)∗([p]− [q]) = [f(p) + g(p)]− [f(q) + g(q)] = [f(p)] + [g(p)]− [f(q)]− [g(q)] = (f∗ + g∗)([p]− [q])

Then, to prove the K-contractibility of T0, we will show that ker(ε⊗ id)∗ = 0 by proving that the map
ε⊗ id is homotopic to the identity in order to apply the homotopy invariance of K0 (see proposition 2.2.4).
Consider the C∗-algebra T̂ = K ⊗ T + T ⊗ 1 ⊂ T ⊗ T . Then it easily seen to fit in the exact sequence

0→ K⊗ T → T̂ q̂−→ C(T)→ 0

where the first map is the inclusion and q̂ is the composition of q : T → C(T) and the multiplication in T .
Then define the C∗-subalgebra of T̂ ⊕ T :

T =
{

(f, g) ∈ T̂ ⊕ T
∣∣∣ q̂(f) = q(g)

}
Then it fits in the short exact sequence

0→ K⊗ T → T → T → 0

which splits by the map given by x ∈ T 7→ (x ⊗ 1, x). Now, let α0, α1 : T → T be the maps given
by α0(S) = (p0 ⊗ S, 0) and α1(S) = (p0 ⊗ 1, 0), where p0 = 1 − SS∗ ∈ K is the projection onto the
first coordinate in `2(N). Note that im(αi) ⊂ (p0 ⊗ 1, 0)T (p0 ⊗ 1, 0) and so αi(S) is an isometry, which
shows that the maps are well defined by the universal property of T . On the same way, define β by
β(S) = (S(1− p0)⊗ 1, S), which is well defined since im(β) ⊂ ((1− p0)⊗ 1, 1)T ((1− p0)⊗ 1, 1). Note
that αiβ = βαi = 0 so that αi + β are homomorphisms of C∗-algebras by the previous lemma.

Lemma 3.3.3. The homomorphisms α0 + β and α1 + β are homotopic.
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Proof. Since S generates T , it suffices to show that the isometries α0(S) + β(S) and α1(S) + β(S) are
connected by a path of isometries st. Then Ht(S) = st will defines a homotopy from α0 + β to α1 + β.
We have

α0(S) + β(S) = (p0 ⊗ S + S(1− p0)⊗ 1, S) and α1(S) + β(S) = ((p0 + S(1− p0))⊗ 1, S)

Set u0 = S(1− p0)S∗ ⊗ 1 + p0S
∗ ⊗ S + Sp0 ⊗ S∗ + p0 ⊗ p0. Then a simple verification shows that u0 is

a self-adjoint unitary of T̂ . Set also u1 = (1 + p0(S∗ − 1) + p1(S − 1)) ⊗ 1, which is also a self-adjoint
unitary of T̂ , where p1 ∈ K is the projection onto the second coordinate in `2(N). Then we have

α0(S) + β(S) = (u0(S ⊗ 1), S) and α1(S) + β(S) = (u1(S ⊗ 1), S)

Since the unitaries u0 and u1 are self-adjoint, their spectrum is contained in {−1, 1}. Hence exp(t ln(ui))
are path of unitaries connecting u0 and u1 to 1. So it gives us a path ut connecting u0 to u1. Furthermore,
since q̂(u0) = q̂(u1) = 1 (because K = ker(q)), ∀t ∈ [0 , 1], q̂(ut) = 1. Then st = (ut(S ⊗ 1), S) defines a
path of isometries in T from α0(S) + β(S) to α1(S) + β(S).

Now we can conclude about the K-contractibility of T0.
Theorem 3.3.1. For every C∗-algebra A, K0(T0 ⊗A) = 0.
Proof. By the previous lemma, we have two homotopic homomorphisms γ0 = (α0 + β) ⊗ id and γ1 =
(α1 + β)⊗ id from T ⊗A to T ⊗A. Hence, by proposition 2.2.4, they induce the same map on K-theory.
So, by lemma 3.3.2,

(α0 ⊗ id)∗ + (β ⊗ id)∗ = (α1 ⊗ id)∗ + (β ⊗ id)∗
and so (α0⊗ id)∗ = (α1⊗ id)∗. Note that, for every x ∈ T , α0(x) = p0⊗x and α1(x) = p0⊗ ε. Remember
that the short exact sequence

0→ K⊗ T → T → T → 0
splits and so, denoting by i the inclusion K ⊗ T ⊗ A ↪→ T ⊗ A, the induced map i∗ : K0(K ⊗ T ⊗
A) → K0(T ⊗ A) is injective too. Denote by m : T ⊗ A → K ⊗ T ⊗ A the homomorphism given by
m(x⊗ a) = p0 ⊗ x⊗ a, which induces an isomorphism m∗ on K-theory by corollary 2.5.3. Then we have

i∗ ◦m∗ ◦ (ε⊗ idA)∗ = (α1 ⊗ idA)∗ = (α0 ⊗ idA)∗ = i∗ ◦m∗ ◦ (idT ⊗A)∗
So, since i∗ is injective m∗ is an isomorphism, we get that ker(ε ⊗ idA)∗ = 0. Thus, by lemma 3.3.1,
K0(T0 ⊗A) = 0.

3.4 Bott periodicity and 6-term exact sequence
By all the results of the previous subsections, we can easily conclude and finish the proof of the Bott
periodicity theorem and then deduce the 6-term exact sequence as follows.
Theorem 3.4.1. Let A be a C∗-algebra. Then K−2(A) ∼= K0(A).
Proof. From the previous subsection, we have the short exact sequence

0→ K⊗A→ T0 ⊗A→ SA→ 0

Remember that SA ∼= C0(R)⊗ A and so S(T0 ⊗ A) ∼= T0 ⊗ SA. Hence the half-infinite exact sequence
induced by the short exact sequence above gives us the exact sequence

0 = K0(T0 ⊗ SA) ∼= K−1(C0(R)⊗A) ∂−→ K0(K ⊗A)→ K0(T0 ⊗A) = 0

using the K-contractibility of T0. Then ∂ : K−2(A) = K−1(C0(R) ⊗ A) → K0(K ⊗ A) ∼= K0(A) is an
isomorphism.

Proposition 3.4.1. Given a short exact sequence of C∗-algebras

0→ I → A→ A/I → 0

we have the 6-term exact sequence

K0(I) K0(A) K0(A/I)

K1(A/I) K1(A) K1(I)

25



Proof. This is a straightforward consequence of Bott periodicity. Indeed, applying the Bott periodicity
theorem, we can shorten to the left the half-infinite exact sequence induced by the short exact sequence
above as follows :

K0(I) K0(A) K0(A/I)

K−1(A/I) K−1(A) K−1(I)

Then we conclude with the fact that K−1 ∼= K1.

26



References
[Bla86] Bruce Blackadar. K-Theory for Operator Algebras. Cambridge University Press, 1986.

[Bla05] Bruce Blackadar. Operator Algebras : Theory of C∗-Algebras and von Neumann Algebras.
Springer-Verlag, 2005.

[Cob67] L.A. Coburn. The c∗-algebra generated by an isometry. Bull. Amer. Math. Soc., 73:722-726,
1967.

[Cun84] Joachim Cuntz. K-theory and C∗-algebras. In Algebraic K-theory, number theory, geometry and
analysis (Bielefeld, 1982), volume 1046 of Lectures Notes in Math., pages 55–79. Springer, 1984.

[Dix69] Jacques Dixmier. Les C∗-algèbres et leur représentations. Bordas, 1969.

[DS88] Nelson Dunford and Jacob T. Schwartz. Linear Operators. Part I : General Theory. Wiley
Classics Library, John Wiley & Sons Inc., 1988.

[MM15] Ip Madsen and Kristian Moi. Introduction to K-theory. Lecture notes, 2015.

[Mur90] Gerard J. Murphy. C∗-Algebras and Operator Theory. Academic Press, 1990.

[NdK16] Ryszard Nest and Niek de Kleijn. Excision and Bott Periodicity. Lecture Notes, 2016.

[RLL00] Mikael Rørdam, Flemming Larsen, and Niels Laustsen. An Introduction to K-Theory for
C∗-Algebras. Cambridge University Press, 2000.

[Wei94] Charles A. Weibel. An introduction to homological algebra. Cambridge University Press, 1994.

27


	Introduction
	C*-algebras
	Basic definitions and main statements
	Projections
	Tensor products of C*-algebras

	Definition of K-theory and main properties
	Preliminaries
	The functor K0
	The functor K1 and higher K-functors
	Half and split exactness
	Stability

	Bott periodicity
	Half infinite exact sequence
	The Toeplitz algebra
	K-contractibility of T0
	Bott periodicity and 6-term exact sequence


